
Reykjavík February 6th 2015

From Monolith to
Services at Scale

How QuizUp is making the
(inevitable?) transition, one

endpoint at a time

Steinn Eldjárn Sigurðarson

Original Architecture

Intro2

App Server Monolith

Intro3

Games RankingPlayers

Chat Search Topics

Events

Localization

Achievements Notifications Login Authentication

Problems?

• inefficient:
• deployment queues
• request load variability
• wasted infrastructure

• scary:
• deployment mistakes = QuizUp is down!
• long/slow deployments (20-50 app servers)

SOA1

Solution?

(micro)services

SOA2

(micro)service benefits

• efficient
• homogeneous request load profiles 

= easy capacity planning 
= more efficient infrastructure

• logic isolation
• no deployment queues = faster iteration

SOA3

(micro)service benefits

• flexibility
• rewrite while maintaining ext. interfaces
• route by path/client/version
• legacy support = multiple services, 

not code branching all the time
• reliability (bulkheading, circuit-breaking)
• … more

SOA4

Pitfalls?

• discovery
• routing
• monitoring
• failure tracking
• “service ready”-checklist
•→ needs more complex infrastructure

SOA5

Solution Components:
ZooRunner

• process wrapper
• can health check
• registers child in ZooKeeper:

• zk://services/<child>
• dies on child death
• services are less tightly integrated with zookeeper
• more reliable than sidecar, more fragile too

SOL1

Solution Components:
NGiNX

• fast, reliable
• developer experience
• clean, friendly codebase
• custom modules:

• accounting (metrics)
• authentication (lua)

SOL2

Solution Components:
EIP Manager

• reliability of non-ELB solution?
• X AWS Elastic IPs (fixed)
• NGiNX run and registered via ZooRunner
• More routers than IPs
• Extra standby router claims IP if unused

SOL3

Solution Components:
Router Manager

• watches zk://routes/*
• zk://services/*
• routes are manually configured (for now)
• zk://routes/collections = 

{"service": "topics", "session_required": false, "locations": ["/collections"],
"https": false, "default_server": “localhost:8888"}

• finds service nodes, generates NGiNX config 
for routing (location + upstreams)

SOL4

zk://routes/*
zk://services/*
zk://routes/collections

Solution Components:
Docker

• tools and services to reliably build and run Linux
containers

• not just hype!
• feels like building a huge binary
• .. which is good!

SOL5

Solution Components:
Docker (cont.)

• standardized deliverables across stacks
• run unit tests inside production “binary”
• perfect for complex integration tests
• lighter than VMs
• portable between local machines, cloud 

and different providers!

SOL6

Solution Components:
Docker Registries

• Once built, dockers must be stored somewhere
• registry in each location (office, dev DC, prod DC)
• CI builds and pushes
• all dockers tagged with githash
• tagged „stable“ @ deploy time

SOL7

Solution Components:
Harbourmaster

• multiple services
• multiple images
• multiple commits
• what’s where?
• lists now, perhaps more in the future

SOL8

Solution Components:
“Robots”

• multiple services
• multiple docker hosts
• multiple revisions
• … hard to spot 

inconsistencies?

SOL9

Current Architecture

SOL10

Current Architecture

SOL11

zr = ZooRunner

NGiNX

Router Manager

Docker

EIP Manager

CI Pipeline

SOL12

GitHub Jenkins local
dockistry

staging
dockistry

push
hook

build
container

lint

unit test

integration
test

tag+push

Benefits? Next steps?

• + team autonomy
• + development speed
• + performance

• 10+ services, 5+ in development

• ? central eventbus / message queue
• ? standardize stacks

FIN1

Lessons learned?
(so far!)

• it’s hard to avoid re-inventing the wheel
• gradual changes are key
• small, simple components
• keep watch of new developments
• productionization checklist

FIN2

Reykjavík February 6th 2015

Thank You!
questions?

