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From Monolith to 
Services at Scale

How QuizUp is making the 
(inevitable?) transition, one 

endpoint at a time

Steinn Eldjárn Sigurðarson
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Problems?

• inefficient: 
• deployment queues 
• request load variability 
• wasted infrastructure 

• scary: 
• deployment mistakes = QuizUp is down! 
• long/slow deployments (20-50 app servers)
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Solution?

(micro)services
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(micro)service benefits

• efficient 
• homogeneous request load profiles 

= easy capacity planning 
= more efficient infrastructure 

• logic isolation 
• no deployment queues = faster iteration
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(micro)service benefits

• flexibility 
• rewrite while maintaining ext. interfaces 
• route by path/client/version 
• legacy support = multiple services, 

not code branching all the time 
• reliability (bulkheading, circuit-breaking) 
•  … more
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Pitfalls?

• discovery 
• routing 
• monitoring 
• failure tracking 
• “service ready”-checklist 
•→ needs more complex infrastructure
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Solution Components: 
ZooRunner

• process wrapper 
• can health check 
• registers child in ZooKeeper: 

•  zk://services/<child> 
• dies on child death 
• services are less tightly integrated with zookeeper 
• more reliable than sidecar, more fragile too
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Solution Components: 
NGiNX

• fast, reliable 
• developer experience 
• clean, friendly codebase 
• custom modules: 

• accounting (metrics) 
• authentication (lua)
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Solution Components: 
EIP Manager

• reliability of non-ELB solution? 
• X AWS Elastic IPs (fixed) 
• NGiNX run and registered via ZooRunner 
• More routers than IPs 
• Extra standby router claims IP if unused
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Solution Components: 
Router Manager

• watches zk://routes/* 
•                zk://services/* 
• routes are manually configured (for now) 
• zk://routes/collections = 

{"service": "topics", "session_required": false, "locations": ["/collections"], 
"https": false, "default_server": “localhost:8888"} 

• finds service nodes, generates NGiNX config 
for routing (location + upstreams)
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Solution Components: 
Docker

• tools and services to reliably build and run Linux 
containers 

• not just hype! 
• feels like building a huge binary 
• .. which is good!
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Solution Components: 
Docker (cont.)

• standardized deliverables across stacks 
• run unit tests inside production “binary” 
• perfect for complex integration tests 
• lighter than VMs 
• portable between local machines, cloud 

and different providers!
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Solution Components: 
Docker Registries

• Once built, dockers must be stored somewhere 
• registry in each location (office, dev DC, prod DC) 
• CI builds and pushes 
• all dockers tagged with githash 
• tagged „stable“ @ deploy time
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Solution Components: 
Harbourmaster

• multiple services 
• multiple images 
• multiple commits 
• what’s where? 
• lists now, perhaps more in the future 
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Solution Components: 
“Robots”

• multiple services 
• multiple docker hosts 
• multiple revisions 
• … hard to spot 

inconsistencies?
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Current Architecture
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Current Architecture
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CI Pipeline 
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Benefits? Next steps?

• + team autonomy 
• + development speed 
• + performance 

• 10+ services, 5+ in development 

• ? central eventbus / message queue 
• ? standardize stacks
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Lessons learned? 
(so far!)

• it’s hard to avoid re-inventing the wheel 
• gradual changes are key 
• small, simple components 
• keep watch of new developments 
• productionization checklist
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Thank You! 
questions?


